Computational study of cyclohexanone-monomer co-initiation mechanism in thermal homo-polymerization of methyl acrylate and methyl methacrylate.
نویسندگان
چکیده
This paper presents a systematic computational study of the mechanism of cyclohexanone-monomer co-initiation in high-temperature homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA). Previous experimental studies of spontaneous thermal homopolymerization of MA and MMA showed higher monomer conversion in the presence of cyclohexanone than xylene. However, these studies did not reveal the initiation mechanism(s) or the initiating species. To identify the initiation mechanism and the initiating species, we explore four different mechanisms, (1) Kaim, (2) Flory, (3) α-position hydrogen transfer, and (4) Mayo, using first-principles density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) calculations. Transition-state geometries for each mechanism are determined using B3LYP/6-31G* and assessed with MP2/6-31G*. Activation energies and rate constants are calculated using transition-state theory. The harmonic oscillator approximation and tunneling corrections are applied to compute the reaction rate constants. This study indicates that α-position hydrogen transfer and Mayo mechanisms have comparable barriers and are capable of generating monoradicals for initiating polymerization of MA and MMA; these two mechanisms can cause cyclohexanone-monomer co-initiation in thermal polymerization of MA and MMA.
منابع مشابه
Synthesis, characterization and polymerization of a novel acrylate monomer containing both 4H-pyran-4-one and 1,2,3-triazole moiety and evaluation of their antibacterial activity
A novel acrylate monomer containing 4H-pyran-4-one and 1,2,3-triazole ring, {1-[4-(4-oxo-6-phenyl-4H-pyran-2-yl)benzyl]-1,2,3-triazol-4-yl}methyl acrylate was synthesized by the reaction of 2-{4-[(4-(hydroxymethyl)-1,2,3-triazol-1-yl)methyl]phenyl}-6-phenyl-4H-pyran-4-one with acryloyl chloride in the presence of triethylamine. The structure of the acrylate monomer was established on the basis ...
متن کاملComputational evidence for self-initiation in spontaneous high-temperature polymerization of methyl methacrylate.
This paper presents computational evidence for the occurrence of diradical mechanism of self-initiation in thermal polymerization of methyl methacrylate. Two self-initiation mechanisms of interest were explored with first-principles density functional theory calculations. Singlet and triplet potential energy surfaces were constructed. The formation of two Diels-Alder adducts, cis- and trans-dim...
متن کاملThe Release of Residual Monomeric Methyl Methacrylate in Human Saliva after Using Acrylic Dentures
The Release of Residual Monomeric Methyl Methacrylate in Human Saliva after Using Acrylic Dentures Dr. AH. Alehavaz* - Dr. D. Qujeq** - Dr. A. Babapour*** *- Assistant Professor of Prosthodontics Dept. – Faculty of Dentistry – Babol University of Medical Sciences. **- Associate Professor of Biochemistry and Biophysics Dept. – Babol University of Medical Sciences. ***- Dentist. Background and Ai...
متن کاملMicroencapsulation of Butyl Palmitate in Polystyrene-co-Methyl Methacrylate Shell for Thermal Energy Storage Application
MicroEncapsulated Phase Change Materials (MEPCM) are green materials which could be used for thermal energy saving applications in buildings as a non-pollutant method for environmental. PCMs could passively reduce peak cooling loads in hot seasons because of their high energy storage capacities at a constant temperature. Purpose of this paper is manufacturing Microencapsulated PCM (MPCM) pr...
متن کاملComputational study of the self-initiation mechanism in thermal polymerization of methyl acrylate.
This computational study deals with the mechanism of spontaneous initiation in thermal polymerization of alkyl acrylates (e.g., methyl, ethyl, and n-butyl acrylate). The mechanism is presently still unknown. Density-functional theory (DFT) and Møller-Plesset (MP2) calculations are used to explore the Flory and Mayo mechanisms of self-initiation in methyl acrylate. On the singlet surface, a low-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 116 22 شماره
صفحات -
تاریخ انتشار 2012